翻訳と辞書
Words near each other
・ Hieronim Zoch
・ Hieronimo
・ Hieronimo Custodis
・ Hieronimo Miani
・ Hieronimo Squarciafico
・ Hieronimowo
・ Hieronimów
・ Hieronyma
・ Hieronyma clusioides
・ Hieronyma crassistipula
・ Hieronyma jamaicensis
・ Hieronyma macrocarpa
・ Hieronymiella
・ Hierarchical closeness
・ Hierarchical Cluster Engine Project
Hierarchical clustering
・ Hierarchical clustering of networks
・ Hierarchical constraint satisfaction
・ Hierarchical control system
・ Hierarchical Data Format
・ Hierarchical database model
・ Hierarchical decision process
・ Hierarchical Dirichlet process
・ Hierarchical Editing Language for Macromolecules
・ Hierarchical epistemology
・ Hierarchical fair-service curve
・ Hierarchical File System
・ Hierarchical generalized linear model
・ Hierarchical hidden Markov model
・ Hierarchical INTegration


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Hierarchical clustering : ウィキペディア英語版
Hierarchical clustering

In data mining and statistics, hierarchical clustering (also called hierarchical cluster analysis or HCA) is a method of cluster analysis which seeks to build a hierarchy of clusters. Strategies for hierarchical clustering generally fall into two types:〔Rokach, Lior, and Oded Maimon. "Clustering methods." Data mining and knowledge discovery handbook. Springer US, 2005. 321-352.〕
*Agglomerative: This is a "bottom up" approach: each observation starts in its own cluster, and pairs of clusters are merged as one moves up the hierarchy.
*Divisive: This is a "top down" approach: all observations start in one cluster, and splits are performed recursively as one moves down the hierarchy.
In general, the merges and splits are determined in a greedy manner. The results of hierarchical clustering are usually presented in a dendrogram.
In the general case, the complexity of agglomerative clustering is O(n^3), which makes them too slow for large data sets. Divisive clustering with an exhaustive search is O(2^n), which is even worse. However, for some special cases, optimal efficient agglomerative methods (of complexity O(n^2)) are known: SLINK for single-linkage and CLINK for complete-linkage clustering.
== Cluster dissimilarity ==
In order to decide which clusters should be combined (for agglomerative), or where a cluster should be split (for divisive), a measure of dissimilarity between sets of observations is required. In most methods of hierarchical clustering, this is achieved by use of an appropriate metric (a measure of distance between pairs of observations), and a linkage criterion which specifies the dissimilarity of sets as a function of the pairwise distances of observations in the sets.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Hierarchical clustering」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.